Гамильтоновы пути и циклы.

Гамильтонов путь (цикл) в графе — путь (цикл), проходящий через каждую вершину ровно один раз. Граф, обладающий гамильтоновым циклом, называется *гамильтоновым*. Достаточные условия гамильтоновости графа на $n \geqslant 3$ вершинах:

Теорема Оре: сумма степеней любых двух несмежных вершин не меньше n.

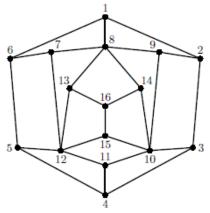
Теорема Дирака: степень каждой вершины не меньше $\frac{n}{2}$.

Теорема Эрдеша–Хватала: для некоторого $k \geqslant 2$ выполнены два условия:

- среди любых k+1 вершин графа есть ребро,
- после удаления любого набора из k-1 вершины граф остается связным.

Несамопересекающийся путь (цикл) — путь (цикл), проходящий по каждой вершине не более одного раза. Длина пути (цикла) — число рёбер в нём.

- **1.** Докажите, что если в связном графе на n вершинах есть несамопересекающийся цикл длины s < n, то в этом графе также есть несамопересекающийся путь длины s.
- **2.** Пусть $a_1, \ldots a_s$ несамопересекающийся путь максимальной длины в графе, причём $s \geqslant 3$ и deg a_1 + deg $a_s \geqslant s$. Докажите, что в этом графе также есть несамопересекающийся цикл длины s.
- **3.** Докажите, что грани гамильтонова плоского графа можно так раскрасить в 4 цвета, чтобы никакие две одноцветные грани не касались по ребру.
- 4. Есть ли в данном графе
 - (а) гамильтонов цикл;
 - (b) гамильтонов путь?



- **5.** Докажите, что граф, сумма степеней любых двух несмежных вершин которого не меньше n-1, имеет гамильтонов путь.
- **6.** *Турнир* это ориентированный граф, любые две вершины которого соединены ровно одним ребром. Докажите следующие утверждения.
 - (а) В любом турнире имеется ориентированный гамильтонов путь.
 - (b) Для любого n существует турнир с n вершинами, в котором не менее $\frac{n!}{2^n}$ ориентированных гамильтоновых путей.