Нётеровы кольца и теорема Гильберта о нулях

Здесь A — коммутативное кольцо с единицей, \mathbb{K} — поле нулевой характеристики (например, \mathbb{R} или \mathbb{C}).

- **1.** Докажите эквивалентность условий в кольце A:
 - Каждый идеал $I \triangleleft A$ конечно порождён, то есть существуют такие $f_1, f_2, \dots, f_k \in I$, что $I = (f_1, f_2, \dots, f_k)$.
 - Каждая возрастающая цепочка идеалов $I_1 \subset I_2 \subset \dots$ стабилизируется, то есть для некоторого N выполнено $I_N = I_{N+1} = \dots$
 - ullet Каждое ненулевое множество идеалов в A имеет максимальный по включению элемент.

При выполнении этих условий кольцо A называется $H\ddot{e}mepoвым$.

- **2.** Докажите, что кольца \mathbb{Z} и $\mathbb{K}[x]$ нётеровы.
- **3.** (а) Для нётерова кольца A и идеала $I \triangleleft A$ докажите, что факторкольцо $B = A/I = \{a+I \mid a \in B\}$ также нётерово.
 - (b) (теорема Гильберта о базисе) Пусть A нётерово кольцо. Тогда A[x] также нётерово.

Указание: рассмотрите идеалы старших коэффициентов многочленов в данном идеале.

4. Пусть алгебра A над полем \mathbb{K} конечно порождена. Докажите, что A нётерова.

Алгебраические подмножества

- Алгебра функций на аффинном пространстве $\mathbb{A}^n = \mathbb{K}^n$ это алгебра многочленов $\mathbb{K}[x_1,\ldots,x_n].$
- *Множеством нулей* набора многочленов $M \subset A$ называется

$$V(M) = \{ p \in \mathbb{A}^n \mid f(p) = 0 \,\forall f \in M \}.$$

Такие подмножества называются алгебраическими, или замкнутыми.

• Аннулирующим идеалом подмножества $X \subset \mathbb{A}^n$ называется

$$I(X) = \{ f \mid f(p) = 0 \,\forall p \in X \} \triangleleft \mathbb{K}[x_1, \dots, x_n].$$

- 5. Проверьте, что замкнутые подмножества образуют топологию Зарисского:
 - Объединение конечного набора замкнутых множеств замкнуто.
 - Пересечение любого набора замкнутых множеств замкнуто.
 - Всё пространство и пустое множество замкнуты.

Как она связана с классической топологией? Можно ли отделить две точки непесекающимися открытыми окрестностями (это свойство называется $xaycdop\phiosocmbo$)?

- 6. Докажите, что
 - (a) если $X \subset Y \subset \mathbb{A}^n$, то $V(X) \supset V(Y)$;
 - (b) для любого $X \subset \mathbb{A}^n$ выполнено $X \subset \mathrm{V}(I(X))$, причём равенство достигается в точности тогда, когда X замкнуто;
 - (c) для любого $I \triangleleft \mathbb{K}[x_1, \dots, x_n]$ выполнено $I \subset I(V(I))$. Приведите примеры, когда обратное включение не выполняется, над \mathbb{R} и над \mathbb{C} .

Теорема Гильберта о нулях (Nullstellensatz)

 $Pa\partial u \kappa a nom$ идеала I называется

$$\sqrt{I} = \{ f \mid \exists d \colon f^d \in I \}.$$

Идеал I называется радикальным, если $I = \sqrt{I}$. В дальнейшем $\mathbb K$ предполагается алгебраически замкнутым, то есть любой многочлен над $\mathbb K$ разлагается в произведение линейных множителей. Например, $\mathbb K = \mathbb C$.

- 7. (а) Максимальные идеалы в $\mathbb{K}[x_1,\ldots,x_n]$ имеют вид $\mathfrak{m}_p=(x_1-a_1,\ldots,x_n-a_n)=I(p)$ для некоторой точки $p=(a_1,\ldots,a_n)\in\mathbb{A}^n$.
 - (b) Пусть $I \triangleleft \mathbb{K}[x_1,\ldots,x_n]$ идеал, не содержащий 1. Тогда $V(I) \neq \emptyset$.
 - (c) (Nullstellensatz) Если $I \triangleleft \mathbb{K}[x_1, \dots, x_n]$, то $I(V(I)) = \sqrt{I}$.

В доказательстве пункта (а) используйте такой факт: если \mathbb{K} -алгебра $A = \mathbb{K}[a_1, \dots, a_n]$, где \mathbb{K} алгебраически замкнуто, является полем, то $A = \mathbb{K}$. В доказательстве пункта (c) рассмотрите идеал (I, fy - 1), где $f \in \mathbb{K}[x_1, \dots, x_n]$, а y — новая переменная.

- 8. Проведите соответствие между:
 - (а) радикальными идеалами и замкнутыми подмножествами;
 - (b) неприводимыми многочленами и неприводимыми гиперповерхностями;
 - (c) *простыми* идеалами (не разлагающимися в произведение двух идеалов, отличных от данного) и *неприводимыми* замкнутыми множествами (не разлагающимися в объединение двух замкнутых подмножеств).
- **9.** Найдите неприводимые компоненты множества xy = zt.
- **10.** Является ли идеал $(xz-y^2, x^3-yz, z^2-x^2y) \lhd \mathbb{K}[x,y,z]$ простым? Какому множеству он соответствует?