Числа Рамсея для гиперграфов

- 1. Среди любых четырёх из 8000 студентов имеется слаженная тройка (т. е. тройка, составляющая слаженную команду на олимпиаду по программированию). Докажите, что есть 5 студентов, любая тройка из которых является слаженной.
- 2. Докажите следующие утверждения.
 - (а) Среди любых 5 точек общего положения на плоскости найдется выпуклый 4-угольник.
 - (b) Найдётся 8 точек общего положения на плоскости, среди которых нет выпуклого 5-угольника.
 - (c) $Teopema\ \mathcal{P}pd\ddot{e}ma$ — $Ce\kappa epema$. Для некоторого n среди любых n точек общего положения на плоскости найдется выпуклый 10-угольник.

Числом Рамсея для гиперграфов $R_l(m_1, ..., m_k)$, где $m_1, ..., m_k \ge l$, называется минимальное из таких целых положительных чисел x, что для любой раскраски всех l-элементных подмножеств x-элементного множества в k цветов найдутся i и подмножество размера m_i , у которого все l-элементные подмножества покрашены в i-й цвет.

Например, очевидно, что $R_2(m_1,\ldots,m_k)=R(m_1,\ldots,m_k)$ и $R_3(3,n)=n$. В задаче 1 требуется доказать, что $R_3(5,4)\leq 8000$. А при решении задачи 2c требуется доказать, что $R_3(10,10)$ или $R_4(5,10)$ существует.

- 3. Докажите следующие утверждения.
 - (a) Число $R_l(m_1, ..., m_k)$ существует для любых $m_1, ..., m_k$.
 - (b) $R_l(m_1,\ldots,m_k) \leq R_l(R_l(m_1,m_2),m_3,\ldots,m_k).$
- **4.** Докажите, что если $C_r^n < 2^{C_n^3 1}$, то $R_3(n, n) > r$.

Домашнее задание

- **1.** Докажите, что сравнение $x^m + y^m \equiv z^m \pmod{p}$ имеет ненулевое решение для
 - (a) m = 2, p = 89;
 - (b) m = 3, p = 97;
 - (c) m = 9, p = 97.
- 2. Докажите следующие теоремы.
 - (a) $Teopema\ Uypa$. Для любой раскраски натурального ряда в конечное число цветов найдется одноцветное решение уравнения x+y=z.

Более точно, для любого целого k>0 существует такое целое r>0, что для любой раскраски первых r натуральных чисел в k цветов найдется одноцветное решение уравнения x+y=z.

- (b) Для любого целого m > 0 существует такое M > 0, что для любого простого числа p > M сравнение $x^m + y^m \equiv z^m \pmod{p}$ имеет ненулевое решение.
- **3.** Докажите, что $R_l(m,n) \leq R_{l-1}(R_l(m-1,n),R_l(m,n-1)) + 1.$
- **4.** Докажите, что найдется такое число c > 0, что $R_3(n,n) \ge 2^{cn^2}$.